
تعداد نشریات | 20 |
تعداد شمارهها | 527 |
تعداد مقالات | 4,573 |
تعداد مشاهده مقاله | 9,733,943 |
تعداد دریافت فایل اصل مقاله | 5,474,152 |
بازاریابی دادهمحور: بررسی نقشه علمی و مرور دامنه | ||
اندیشه مدیریت راهبردی | ||
مقاله 1، دوره 18، شماره 1 - شماره پیاپی 39، فروردین 1403، صفحه 1-36 اصل مقاله (891.1 K) | ||
نوع مقاله: مقاله علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.30497/smt.2024.247138.3612 | ||
نویسندگان | ||
محمد ماستری فراهانی1؛ رضا پاینده* 2 | ||
1دانشجوی دکتری مدیریت بازاریابی، دانشگاه علامه طباطبایی، تهران، ایران. | ||
2استادیار حکمرانی نوآوری و توسعه پایدار، دانشکده حکمرانی دانشگاه تهران، تهران، ایران | ||
چکیده | ||
رشد روزافزون کلاندادهها در عصر دیجیتال، کاربرد بازاریابی دادهمحور در کسبوکارها را به منظور شناخت دقیقتر بازار و مشتریان و ارائه محصولات و خدمات شخصیسازی شده افزایش داده است. پژوهش حاضر با بررسی دامنه تحقیقاتی بازایابی دادهمحور در جهت ارزیابی روند انتشار مقالات و پاسخگویی به سؤالات پایهای تولیدات علمی به ویژه شناسایی مهمترین چارچوبهای بازاریابی و صنایع کاربردی در بازاریابی دادهمحور گام برمیدارد. این تحقیق با استفاده از روش علمسنجی و تحلیل همواژگانی، الگوها و روندهای مرتبط با تحقیقات علمی حوزه بازاریابی دادهمحور را از سال 1987 تا نوامبر 2023 شناسایی کرده و سپس با کمک روش مرور دامنه، 59 مقاله منتخب بازاریابی دادهمحور را بررسی مینماید. یافتههای پژوهش نشان داد چارچوب رفتار مصرفکننده و صنعت گردشگری بیشترین کاربرد را در تحقیقات بازاریابی دادهمحور داشتهاند. همچنین چارچوب قیمتگذاری و حوزههای محصولات کودک، محصولات بهداشتی، هواپیمایی، سلامت الکترونیک و مخابرات فقط یک مقاله به خود اختصاص دادهاند. بر اساس نتایج تحقیق، اهمیت و کاربرد کلانداده در فرایندهای بازاریابی به ویژه تصمیمگیری و پیشبینی رفتار مشتریان افزایش یافته است. همچنین پیشبینی میشود یادگیری ماشین بیشترین نقش را در جمعآوری و تحلیل کلاندادهها در آینده بازاریابی دادهمحور ایفا نماید و خدمات کسبوکار مبتنی بر تحلیل کلانداده به ویژه در حوزه «مدیریت برند» گسترش یابد. | ||
کلیدواژهها | ||
بازاریابی دادهمحور؛ کلانداده؛ کتابسنجی؛ مرور دامنه؛ بازاریابی | ||
عنوان مقاله [English] | ||
Data Driven Marketing: Examining the Scientific Map and Scoping Review | ||
نویسندگان [English] | ||
Mohammad Masteri Farahani1؛ Reza Payandeh2 | ||
1PhD student in Marketing Management, Allameh Tabatabaei University, Tehran, Iran. | ||
2Assistant Professor of Innovation Governance and Sustainable Development, Faculty of Governance, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
The current research takes a step by examining the research scope of data-driven retrieval to evaluate the process of publishing articles and answering the basic questions of scientific productions, especially identifying the most important marketing frameworks and applied industries in data-driven marketing. Using bibliometric and Co-Word analysis, this research identifies patterns and trends related to scientific research in the field of data-driven marketing from 1987 to November 2023 and then examines 59 selected data-driven marketing articles with the help of the scoping review method. The findings of the research showed that the framework of consumer behavior and the tourism industry were the most used in data-driven marketing research. Also, the pricing framework and industries of baby products, health products, aviation, electronic health, and telecommunications have only one article. It is expected that machine learning will play the biggest role in the collection and analysis of big data in the future of data-driven marketing, and business services based on big data analysis will expand, especially in the field of "brand management". | ||
کلیدواژهها [English] | ||
Data-Driven Marketing, Big Data, Bibliometric, Scoping Review, Marketing | ||
مراجع | ||
Agrawal, M.; Khan, A. U.; Shukla, P. K. (2019): Stock price prediction using technical indicators: A predictive model using optimal deep learning. In International Journal of Recent Technology and Engineering 8 (2), pp. 2297–2305. DOI: 10.35940/ijrteB3048.078219. Aguinis, Herman; Ramani, Ravi S.; Alabduljader, Nawaf (2023): Best-Practice Recommendations for Producers, Evaluators, and Users of Methodological Literature Reviews. In Organizational Research Methods 26 (1), pp. 46–76. DOI: 10.1177/1094428120943281. Akter, S.; Gunasekaran, A.; Wamba, S. F.; Babu, M. M.; Hani, U. (2020): Reshaping competitive advantages with analytics capabilities in service systems. In Technological Forecasting and Social Change 159. DOI: 10.1016/j.techfore.2020.120180. Aljumah, A. I.; Nuseir, M. T.; Alam, M. M. (2021): Traditional marketing analytics, big data analytics and big data system quality and the success of new product development. In Business Process Management Journal 27 (4), pp. 1108–1125. DOI: 10.1108/BPMJ-11-2020-0527. Amado, A.; Cortez, P.; Rita, P.; Moro, S. (2018): Research trends on Big Data in Marketing: A text mining and topic modeling-based literature analysis. In European Research on Management and Business Economics 24 (1), pp. 1–7. DOI: 10.1016/j.iedeen.2017.06.002. Arco, M. D.; Presti, L. L.; Marino, V.; Resciniti, R. (2019): Embracing AI and Big Data in customer journey mapping: From literature review to a theoretical framework. In Innovative Marketing 15 (4), pp. 102–115. DOI: 10.21511/im.15(4).2019.09. Arksey, H., & O’Malley, L. (2005). Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616. Aydin, G.; Silahtaroglu, G. (2021): Insights into mobile health application market via a content analysis of marketplace data with machine learning. In PLOS ONE 16 (1). DOI: 10.1371/journal.pone.0244302. Bag, S.; Gupta, S.; Kumar, A.; Sivarajah, U. (2021): An integrated artificial intelligence framework for knowledge creation and B2B marketing rational decision making for improving firm performance. In Industrial Marketing Management 92, pp. 178–189. DOI: 10.1016/j.indmarman.2020.12.001. Benoit, D. F.; Lessmann, S.; Verbeke, W. (2020): On realising the utopian potential of big data analytics for maximising return on marketing investments. In Journal of Marketing Management 36 (3-4), pp. 233–247. DOI: 10.1080/0267257X.2020.1739446. Blasi, S.; Brigato, L.; Sedita, S. R. (2020): Eco-friendliness and fashion perceptual attributes of fashion brands: An analysis of consumers’ perceptions based on twitter data mining. In Journal of Cleaner Production 244. DOI: 10.1016/j.jclepro.2019.118701. Brewis, C.; Dibb, S.; Meadows, M. (2023): Leveraging big data for strategic marketing: A dynamic capabilities model for incumbent firms. In Technological Forecasting and Social Change 190. DOI: 10.1016/j.techfore.2023.122402. Cadden, T.; Weerawardena, J.; Cao, G.; Duan, Y.; McIvor, R. (2023): Examining the role of big data and marketing analytics in SMEs innovation and competitive advantage: A knowledge integration perspective. In Journal of Business Research 168. DOI: 10.1016/j.jbusres.2023.114225. Cao, G. M.; Tian, N.; Blankson, C. (2022): Big Data, Marketing Analytics, and Firm Marketing Capabilities. In JOURNAL OF COMPUTER INFORMATION SYSTEMS 62 (3), pp. 442–451. DOI: 10.1080/08874417.2020.1842270. Chen, J. H.; Ji, T. T.; Su, M. C.; Wei, H. H.; Azzizi, V. T.; Hsu, S. C. (2021): Swarm-inspired data-driven approach for housing market segmentation: a case study of Taipei city. In JOURNAL OF HOUSING AND THE BUILT ENVIRONMENT 36 (4), pp. 1787–1811. DOI: 10.1007/s10901-021-09824-1. Christian Janiesch; Barbara Dinter; Patrick Mikalef; Olgerta Tona (2022): Business analytics and big data research in information systems. In Journal of Business Analytics. Cobo, M. J.; López‐Herrera, A. G.; Herrera‐Viedma, E.; Herrera, F. (2012): SciMAT: A new science mapping analysis software tool. In J Am Soc Inf Sci Tec 63 (8), pp. 1609–1630. DOI: 10.1002/asi.22688. Del Vecchio, P.; Mele, G.; Siachou, E.; Schito, G. (2022): A structured literature review on Big Data for customer relationship management (CRM): toward a future agenda in international marketing. In International Marketing Review 39 (5), pp. 1069–1092. DOI: 10.1108/IMR-01-2021-0036. Dolnicar, S. (2002): A review of data-driven market segmentation in tourism. In Journal of Travel and Tourism Marketing 12 (1), pp. 1–22. DOI: 10.1300/J073v12n01_01. Erevelles, Sunil; Fukawa, Nobuyuki; Swayne, Linda (2016): Big Data consumer analytics and the transformation of marketing. In Journal of Business Research 69 (2), pp. 897–904. DOI: 10.1016/j.jbusres.2015.07.001. Favaretto, Maddalena; Clercq, Eva de; Schneble, Christophe Olivier; Elger, Bernice Simone (2020): What is your definition of Big Data? Researchers' understanding of the phenomenon of the decade. In PLOS ONE 15 (2), e0228987. DOI: 10.1371/journal.pone.0228987. Feng, Jia; Zhang, Yun Qiu; Zhang, Hao (2017): Improving the co-word analysis method based on semantic distance. In Scientometrics 111 (3), pp. 1521–1531. DOI: 10.1007/s11192-017-2286-1. Filieri, R.; Lin, Z. B.; Li, Y. L.; Lu, X. Q.; Yang, X. W. (2022): Customer Emotions in Service Robot Encounters: A Hybrid Machine-Human Intelligence Approach. In Journal of Service Research 25 (4), pp. 614–629. DOI: 10.1177/10946705221103937. Giglio, S.; Pantano, E.; Bilotta, E.; Melewar, T. C. (2020): Branding luxury hotels: Evidence from the analysis of consumers’ “big” visual data on TripAdvisor. In Journal of Business Research 119, pp. 495–501. DOI: 10.1016/j.jbusres.2019.10.053. Grandhi, B.; Patwa, N.; Saleem, K. (2021): Data-driven marketing for growth and profitability. In EuroMed Journal of Business 16 (4), pp. 381–398. DOI: 10.1108/EMJB-09-2018-0054. Grant, Maria J.; Booth, Andrew (2009): A typology of reviews: an analysis of 14 review types and associated methodologies. In Health information and libraries journal 26 (2), pp. 91–108. DOI: 10.1111/j.1471-1842.2009.00848. x. Hair, J. F.; Harrison, D. E.; Risher, J. J. (2018): Marketing research in the 21st century: Opportunities and challenges. In Revista Brasileira de Marketing 17 (5), pp. 666–699. DOI: 10.5585/bjm. v17i5.4173. Hauser, William J. (2007): Marketing analytics: the evolution of marketing research in the twenty‐first century. In Direct Marketing: An International Journal 1 (1), pp. 38–54. DOI: 10.1108/17505930710734125. Hemker, S.; Herrando, C.; Constantinides, E. (2021): The Transformation of Data Marketing: How an Ethical Lens on Consumer Data Collection Shapes the Future of Marketing. In SUSTAINABILITY 13 (20). DOI: 10.3390/su132011208. Huang, Y.; Liu, H.; Li, W.; Wang, Z.; Hu, X.; Wang, W. (2020): Lifestyles in Amazon: Evidence from online reviews enhanced recommender system. In International Journal of Market Research 62 (6), pp. 689–706. DOI: 10.1177/1470785319844146. Ishida, Chiharu; Tong, Pui Ying; Kaufman, Peter (2023): Quantitative Anxiety and Insights for Preparing Students for Data-Driven Marketing Jobs. Proceedings of the 2022 AMS Annual Conference, May 25-27. Jabbar, Abdul; Akhtar, Pervaiz; Dani, Samir (2020): Real-time big data processing for instantaneous marketing decisions: A problematization approach. In Industrial Marketing Management 90, pp. 558–569. DOI: 10.1016/j.indmarman.2019.09.001. Jeffery, M (2010): Data-Driven Marketing: The 15 Metrics Everyone in Marketing Should Know. Available online at https://www.semanticscholar.org/paper/Data-Driven-Marketing%3A-The-15-Metrics-Everyone-in-Jeffery/9c972ab840b04c88323660a5f0fd0d95ab738375. Jiang, R. B.; Feng, Z. N.; Zhang, D. S.; Wang, S.; Zhu, Y. M.; Zhang, F.; He, T. (2021): Data-Driven Digital Advertising with Uncertain Demand Model in Metro Networks. In IEEE TRANSACTIONS ON BIG DATA 7 (2), pp. 313–326. DOI: 10.1109/TBDATA.2017.2725913. Khasseh, Ali Akbar; Soheili, Faramarz; Moghaddam, Hadi Sharif; Chelak, Afshin Mousavi (2017): Intellectual structure of knowledge in iMetrics: A co-word analysis. In INFORMATION PROCESSING & MANAGEMENT 53 (3), pp. 705–720. DOI: 10.1016/j.ipm.2017.02.001. Kitchens, Brent; Dobolyi, David; Li, Jingjing; Abbasi, Ahmed (2018): Advanced Customer Analytics: Strategic Value Through Integration of Relationship-Oriented Big Data. In Journal of Management Information Systems 35 (2), pp. 540–574. DOI: 10.1080/07421222.2018.1451957. Kotler, Philip; Keller, Kevin Lane (2016): Marketing management. 15 edition. Boston: Pearson. Kunisch, Sven; Denyer, David; Bartunek, Jean M.; Menz, Markus; Cardinal, Laura B. (2023): Review Research as Scientific Inquiry. In Organizational Research Methods 26 (1), pp. 3–45. DOI: 10.1177/10944281221127292. Leung, Xi Y.; Sun, Jie; Bai, Billy (2017): Bibliometrics of social media research: A co-citation and co-word analysis. In International Journal of Hospitality Management 66, pp. 35–45. DOI: 10.1016/j.ijhm.2017.06.012. Liao, S. H.; Widowati, R.; Cheng, C. J. (2022): Investigating Taiwan Instagram users' behaviors for social media and social commerce development. In ENTERTAINMENT COMPUTING 40. DOI: 10.1016/j.entcom.2021.100461. Liberati, Alessandro; Altman, Douglas G.; Tetzlaff, Jennifer; Mulrow, Cynthia; Gøtzsche, Peter C.; Ioannidis, John P. A. et al. (2009): The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. In BMJ (Clinical research ed.) 339, b2700. DOI: 10.1136/bmj. b2700. Liu, X.; Shin, H.; Burns, A. C. (2021): Examining the impact of luxury brand's social media marketing on customer engagement: Using big data analytics and natural language processing. In Journal of Business Research 125, pp. 815–826. DOI: 10.1016/j.jbusres.2019.04.042. Mariani, M. M.; Borghi, M.; Kazakov, S. (2019): The role of language in the online evaluation of hospitality service encounters: An empirical study. In International Journal of Hospitality Management 78, pp. 50–58. DOI: 10.1016/j.ijhm.2018.11.012. Miklosik, A.; Evans, N. (2020): Impact of Big Data and Machine Learning on Digital Transformation in Marketing: A Literature Review. In IEEE ACCESS 8, pp. 101284–101292. DOI: 10.1109/ACCESS.2020.2998754. Mirzaalian, F.; Halpenny, E. (2019): Social media analytics in hospitality and tourism A systematic literature review and future trends. In JOURNAL OF HOSPITALITY AND TOURISM TECHNOLOGY 10 (4), pp. 764–790. DOI: 10.1108/JHTT-08-2018-0078. Nilashi, M.; Abumalloh, R. A.; Samad, S.; Alrizq, M.; Alyami, S.; Alghamdi, A. (2023): Analysis of customers' satisfaction with baby products: The moderating role of brand image. In Journal of Retailing and Consumer Services 73. DOI: 10.1016/j.jretconser.2023.103334. Pamuksuz, U.; Yun, J. T.; Humphreys, A. (2021): A Brand-New Look at You: Predicting Brand Personality in Social Media Networks with Machine Learning. In Journal of Interactive Marketing 56, pp. 55–69. DOI: 10.1016/j.intmar.2021.05.001. Perera, W.K.R.; Dilini, K. A.; Kulawansa, T. (122018): A Review of Big Data Analytics for Customer Relationship Management. In : 2018 3rd International Conference on Information Technology Research (ICITR). 3rd International Conference on Information Technology Research (ICITR). Moratuwa, Sri Lanka, 12/5/2018 - 12/7/2018: IEEE, pp. 1–6. Peters, Micah D. J.; Godfrey, Christina; McInerney, Patricia; Khalil, Hanan; Larsen, Palle; Marnie, Casey et al. (2022): Best practice guidance and reporting items for the development of scoping review protocols. In JBI evidence synthesis 20 (4), pp. 953–968. DOI: 10.11124/JBIES-21-00242. Puri, D.; Mohan, T. (2020): Behavioral advertising with big data: A consumer’s perspective. In International Journal on Emerging Technologies 11 (3), pp. 771–776. Available online at https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087317967&partnerID=40&md5=c9330e64134d2f7ac17bbb7526038b1d. Rojas Berrio, S. P.; Vega Rodriguez, R. A.; Robayo Pinzón, Ó.J.; Montoya Restrepo, L. A.; Piedrahita Solórzano, G. A. (2016): Big data: Trend emerging from research in marketing. In Espacios 37 (38). Available online at https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013469114&partnerID=40&md5=1e43b165c7c45d323300093e091963d6. Rosário, A. T.; Dias, J. C. (2023): How has data-driven marketing evolved: Challenges and opportunities with emerging technologies. In International Journal of Information Management Data Insights 3 (2). DOI: 10.1016/j.jjimei.2023.100203. Sakas, D. P.; Reklitis, D. P.; Terzi, M. C.; Glaveli, N. (2023): Growth of digital brand name through customer satisfaction with big data analytics in the hospitality sector after the COVID-19 crisis. In International Journal of Information Management Data Insights 3 (2). DOI: 10.1016/j.jjimei.2023.100190. Shah, D.; Murthi, B.P.S. (2021): Marketing in a data-driven digital world: Implications for the role and scope of marketing. In Journal of Business Research 125, pp. 772–779. DOI: 10.1016/j.jbusres.2020.06.062. Sheth, Jagdish; Kellstadt, Charles H. (2021): Next frontiers of research in data driven marketing: Will techniques keep up with data tsunami? In Journal of Business Research 125, pp. 780–784. DOI: 10.1016/j.jbusres.2020.04.050. Tékouabou, S.C.K.; Gherghina, Ş.C.; Toulni, H.; Mata, P. N.; Mata, M. N.; Martins, J. M. (2022): A Machine Learning Framework towards Bank Telemarketing Prediction. In Journal of Risk and Financial Management 15 (6). DOI: 10.3390/jrfm15060269. Wang, Yuan; Li, Jiao; Lee, Lien-Chieh; Wang, Mengyang; Du, Huibin (2019): A review of input–output model application hot spots in the energy and environment fields based on co-words network analysis. In Environ. Rev. 27 (4), pp. 567–574. DOI: 10.1139/er-2018-0110. Xavier, J.; Picoto, W. N. (2023): Regulation of data-driven marketing and management theory: bibliometric analysis, systematic literature review and research agenda. In International Journal of Law and Management 65 (5), pp. 461–482. DOI: 10.1108/IJLMA-02-2023-0022. Xu, Zhenning; Frankwick, Gary L.; Ramirez, Edward (2016): Effects of big data analytics and traditional marketing analytics on new product success: A knowledge fusion perspective. In Journal of Business Research 69 (5), pp. 1562–1566. DOI: 10.1016/j.jbusres.2015.10.017. Yan, Bei-Ni; Lee, Tian-Shyug; Lee, Tsung-Pei (2015): Mapping the intellectual structure of the Internet of Things (IoT) field (2000–2014): a co-word analysis. In Scientometrics 105 (2), pp. 1285–1300. DOI: 10.1007/s11192-015-1740-1. Yartey, D.; Omojola, O.; Amodu, L.; Ndubueze, N.; Adeyeye, B.; Adesina, E. (2020): Personal data collection and usage for mobile marketing. Customer awareness and perception. In WSEAS Transactions on Business and Economics 18, pp. 42–50. | ||
آمار تعداد مشاهده مقاله: 464 تعداد دریافت فایل اصل مقاله: 24 |